
Week 2

2.1 Cyclic groups
Definition. Let G be a group, with identity element e. The order of an element
g ∈ G, denoted by |g|, is the smallest positive integer n such that gn = e; if no

such n exists, we say that g has infinite order and write |g| =∞.

Exercise: If G has finite order, then every element of G has finite order.

Proposition 2.1.1. Let G be a group with identity element e. Let g be an element
of G. If gn = e for some n ∈ Z>0, then |g| divides n.

Proof. Let m = |g|. Suppose gn = e. By the Division Theorem, there exist

(uniquely) integers q and 0 ≤ r < m such that n = mq + r. So gn = (gm)q · gr
which implies that gr = e. This forces r = 0 (since otherwise this violates the

definition of |g| = m). Hence m | n.

Given an element g in a group G, we define the subset 〈g〉 ⊂ G as the set of

all integral powers of g:

〈g〉 = {gn : n ∈ Z}.
Recall that

|g| =
{

min{n ∈ Z>0 : g
n = e} if ∃n ∈ Z>0 such that gn = e,

∞ otherwise.

Proposition 2.1.2. If |g| =∞, then 〈g〉 is an infinite set; in fact, the map Z→ 〈g〉,
n 
→ gn is a bijection. If |g| = m <∞, then

〈g〉 = {e, g, g2, . . . , gm−1}.

Proof. Suppose |g| = ∞. It follows from the definition of 〈g〉 that the map Z →
〈g〉, n 
→ gn is surjective. So we only need to show that it is also injective.
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Suppose gn1 = gn2 for some n1, n2 ∈ Z. If n1 �= n2, then without loss of

generality, we can assume that n1 > n2. Then we have gn1−n2 = e with n1−n2 ∈
Z>0. But this violates the assumption that |g| =∞. Hence we must have n1 = n2,

showing the required injectivity.

When |g| = m < ∞, we want to show that 〈g〉 = {e, g, g2, . . . , gm−1}.
Clearly we have 〈g〉 ⊃ {e, g, g2, . . . , gm−1}, so we only need to prove the re-

verse inclusion. Take an element gn ∈ 〈g〉. Then the Division Theorem im-

plies that there exist integers q and 0 ≤ r < m such that n = mq + r. So

gn = (gm)q · gr = gr ∈ {e, g, g2, . . . , gm−1}. This completes the proof.

Definition. A group G is cyclic if there exists g ∈ G such that every element of

G is equal to gn for some integer n. In this case, we write G = 〈g〉, and say that g
is a generator of G.

Remark. The generator of of a cyclic group might not be unique, i.e. there may

exist different elements g1, g2 ∈ G such that G = 〈g1〉 = 〈g2〉.
Example 2.1.3. • (Z,+) is cyclic, generated by 1 or −1.

• (Zn,+) is cyclic, generated by 1, or k ∈ Zn such that gcd(k, n) = 1.

• (Um, ·) is cyclic, generated by ζm = e2πi/m, or ζnm for any integer n ∈ Zm

such that gcd(m,n) = 1.

Exercise: A finite cyclic group G has order n if and only if each of its generators

has order n.

Exercise: The group (Q,+) is not cyclic.

Example 2.1.4. Let p be a prime. Let G = (Zp,+). For all g �= 0 in G, the order

of g is p.

Proof. Exercise.

Proposition 2.1.5. Every cyclic group is abelian

Proof. Let G be a cyclic group. Then G = 〈g〉 for some element g ∈ G and every

element is of the form gn for some n ∈ Z. Now

gn1 · gn2 = gn1+n2 = gn2+n1 = gn2 · gn1 .

So G is abelian.

Remark. The converse is not true, namely, there are non-cyclic abelian groups

(e.g. the Klein 4-group Z2 × Z2).
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2.2 Symmetric groups
Definition. Let X be a set. A permutation of X is a bijective map σ : X −→ X .

Proposition 2.2.1. The set SX of permutations of a set X is a group with respect
to ◦, the composition of maps.

Proof. • Let σ, γ be permutations of X . By definition, they are bijective maps

from X to itself. It is clear that σ ◦ γ is a bijective map from X to itself,

hence σ ◦ γ is a permutation of X . So ◦ is a well-defined binary operation

on SX .

• For α, β, γ ∈ SX , it is clear that α ◦ (β ◦ γ) = (α ◦ β) ◦ γ.

• Define a map e : X −→ X as follows:

e(x) = x, for all x ∈ X.

It is clear that e ∈ SX , and that e ◦ σ = σ ◦ e = σ for all σ ∈ SX . Hence, e
is an identity element in SX .

• Let σ be any element of SX . Since σ : X −→ X is by assumption bijective,

there exists a bijective map σ−1 : X −→ X such that σ◦σ−1 = σ−1◦σ = e.

So σ−1 is an inverse of σ with respect to the operation ◦.

Terminology: We call SX the symmetric group on X .

Notation. Let n be a positive integer. Consider the set In := {1, 2, . . . , n}. Then

we denote SIn by Sn and call it the n-th symmetric group.

For n ∈ Z>0, the group Sn has n! elements.

For n ∈ Z>0, by definition an element of Sn is a bijective map σ : In −→ In,

where In = {1, 2, . . . , n}. We often describe σ using the following notation:

σ =

(
1 2 · · · n

σ(1) σ(2) . . . σ(n)

)

Example 2.2.2. In S3,

σ =

(
1 2 3
3 2 1

)

is the permutation on I3 = {1, 2, 3} which sends 1 to 3, 2 to itself, and 3 to 1, i.e.

σ(1) = 3, σ(2) = 2, σ(3) = 1.
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For α, β ∈ S3 given by:

α =

(
1 2 3
2 3 1

)
, β =

(
1 2 3
2 1 3

)
,

we have:

αβ = α ◦ β =

(
1 2 3
2 3 1

)
◦
(
1 2 3
2 1 3

)
=

(
1 2 3
3 2 1

)

(since, for example, α ◦ β : 1
β
−→ 2

α
−→ 3.).

We also have:

βα = β ◦ α =

(
1 2 3
2 1 3

)
◦
(
1 2 3
2 3 1

)
=

(
1 2 3
1 3 2

)

Since αβ �= βα, the group S3 is non-abelian.

In general, for n ≥ 3, the group Sn is non-abelian (Exercise: Why?).

For the same α ∈ S3 defined above, we have:

α2 = α ◦ α =

(
1 2 3
2 3 1

)
◦
(
1 2 3
2 3 1

)
=

(
1 2 3
3 1 2

)

and:

α3 = α · α2 =

(
1 2 3
2 3 1

)
◦
(
1 2 3
3 1 2

)
=

(
1 2 3
1 2 3

)
= e

Hence, the order of α is 3.

More on Sn

Consider the following element in S6:

σ =

(
1 2 3 4 5 6
5 4 3 6 1 2

)

We may capture the action of σ : {1, 2, . . . , 6} −→ {1, 2, . . . , 6} using the nota-

tion:

σ = (15)(246),

where (i1i2 · · · ik) denotes the permutation:

i1 
→ i2, i2 
→ i3, . . . , ik−1 
→ ik, ik 
→ i1

and j 
→ j for all j ∈ {1, 2, . . . , n}\{i1, i2, . . . , ik}. We call (i1i2 · · · ik) a k-cycle
or a cycle of length k. Note that 3 is missing from (15)(246), meaning that 3 is

fixed by σ.
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Proposition 2.2.3. Every permutation α ∈ Sn is either a cycle or a product of
disjoint cycles.

Proof. Later.

Exercise: Disjoint cycles commute with each other.

A 2-cycle is often called a transposition, for it switches two elements with

each other.
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